Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38613619

RESUMEN

The formulation of more accurate models to describe tissue mechanics necessitates the availability of tools and instruments that can precisely measure the mechanical response of tissues to physical loads and other stimuli. In this regard, neuroscience has trailed other life sciences owing to the unavailability of representative live tissue models and deficiency of experimentation tools. We previously addressed both challenges by employing a novel instrument called the cantilevered-capillary force apparatus (CCFA) to elucidate the mechanical properties of mouse neurospheres under compressive forces. The neurospheres were derived from murine stem cells, and our study was the first of its kind to investigate the viscoelasticity of living neural tissues in vitro. In the current study, we demonstrate the utility of the CCFA as a broadly applicable tool to evaluate tissue mechanics by quantifying the effect that oxidative stress has on the mechanical properties of neurospheres. We treated mouse neurospheres with non-cytotoxic levels of hydrogen peroxide and subsequently evaluated the storage and loss moduli of the tissues under compression and tension. We observed that the neurospheres exhibit viscoelasticity consistent with neural tissue and show that elastic modulus decreases with increasing size of the neurosphere. Our study yields insights for establishing rheological measurements as biomarkers by laying the groundwork for measurement techniques and showing that the influence of a particular treatment may be misinterpreted if the size dependence is ignored.

2.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971323

RESUMEN

We present a new design for an interfacial dilational rheometer that can generate oscillatory dilational strain on a planar air-liquid interface. The strain is generated by a pneumatic mechanism involving a deformable film, which forms a circular barrier that can contract or expand under different pressures. The interfacial stress is measured using a Wilhelmy rod. We carefully examine and demonstrate the effects of potential sources of measurement error, including inertia, drag, buoyancy, flow from the bulk phase, and surface waves. The design avoids mixed deformations present in other instruments and is currently capable of accurate measurements at frequencies up to ∼0.1 Hz and dilational strains below 0.001, with potential for higher frequencies after further theoretical development. We demonstrate the integration of the interfacial dilational rheometer with a Langmuir trough by measuring the compression isotherm of an insoluble surfactant, stearic acid. Furthermore, we verify the capability of the interfacial dilational rheometer to perform frequency and amplitude sweeps and present the storage and loss moduli for a water-soluble surfactant, sodium dodecylbenzenesulfonate, at different concentrations.

3.
Langmuir ; 39(39): 13921-13931, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37737569

RESUMEN

Cellulose nanocrystals (CNCs) are sustainable particles that are effective at stabilizing emulsions by adsorbing at droplet interfaces and providing a steric barrier to coalescence. However, CNCs have surface charges that reduce the coverage of the emulsion droplets due to the electrostatic repulsion between CNCs. In such cases, adding salt is a typical (and straightforward) way to adjust the formulation so that the charges are screened, allowing increased coverage of the droplets. At the outset of this work, we hypothesized that characterization of the interfacial tension and interfacial shear rheology of the oil-water interface would be correlated to interfacial coverage and therefore predictive of the optimal salt concentration for emulsion stability. Included in the methods section as a useful reference to others is the presentation of a detailed derivation for the equations needed to compute interfacial shear moduli in a custom, double-gap geometry. In contrast to our hypothesis, we found that interfacial tension did not correlate well with emulsion stability and that the native surface-active compounds in corn oil overwhelmed any influence of the CNCs on the interfacial tension. Additionally, we found that interfacial shear rheology (which can be painstakingly difficult to measure) was not a useful tool for formulating these emulsions. This is because at commonly used concentrations of CNCs, the bulk rheology is increased to a much greater degree than that of the interface, making the details of the interfacial rheology unimportant. Finally, we found that at concentrations of CNCs that are typical in industrial processes, characterizing the bulk viscoelastic properties of the aqueous suspending phase without added oil (a relatively simple measurement) is sufficient to predict the influence of NaCl concentration on charge screening between the CNCs and, by extension, increased surface coverage of droplets for greater emulsion stability.

4.
J Colloid Interface Sci ; 648: 46-55, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295369

RESUMEN

Hypothesis Nonaqueous foams are found in a variety of applications, many of which contain volatile components that need to be removed during processing. Sparging air bubbles into the liquid can be used to aid in their removal, but the resulting foam can be stabilized or destabilized by several different mechanisms, the relative importance of which are not yet fully understood. Investigating the dynamics of thin film drainage, four competing mechanisms can be observed, such as solvent evaporation, film viscosification, and thermal and solutocapillary Marangoni flows. Experiments Experimental studies with isolated bubbles and/or bulk foams are needed to strengthen the fundamental knowledge of these systems. This paper presents interferometric measurements of the dynamic evolution of a film formed by a bubble rising to an air-liquid interface to shed light on this situation. Two different solvents with different degrees of volatility were investigated to reveal both qualitative and quantitative details on thin film drainage mechanisms in polymer-volatile mixtures. Findings Using interferometry, we found evidence that solvent evaporation and film viscosification both strongly influence the stability of interface. These findings were corroborated by comparison with bulk foam measurements, revealing a strong correlation between these two systems.

5.
Biomicrofluidics ; 16(4): 044112, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36035888

RESUMEN

Despite growing interest in droplet microfluidic methods for droplet interface bilayer (DIB) formation, there is a dearth of information regarding how phospholipids impact device function. Limited characterization has been carried out for phospholipids, either computationally (in silico) or experimentally (in situ) in polydimethylsiloxane (PDMS) microfluidic devices, despite recent work providing a better understanding of how other surfactants behave in microfluidic systems. Hence, microfluidic device design for DIB applications relies heavily on trial and error, with many assumptions made about the impact of phospholipids on droplet formation and surface properties. Here, we examine the effects of phospholipids on interfacial tension, droplet formation, wetting, and hence device longevity, using DPhPC as the most widely used lipid for DIB formation. We use a customized COMSOL in silico model in comparison with in situ experimental data to establish that the stabilization of droplet formation seen when the lipid is dosed in the aqueous phase (lipid-in) or in the oil phase (lipid-out) is directly dependent on the effects of lipids on the device surface properties, rather than on how fast they coat the droplet. Furthermore, we establish a means to visually characterize surface property evolution in the presence of lipids and explore rates of device failure in the absence of lipid, lipid-out, and lipid-in. This first exploration of the effects of lipids on device function may serve to inform the design of microfluidic devices for DIB formation as well as to troubleshoot causes of device failure during microfluidic DIB experiments.

6.
Colloids Surf B Biointerfaces ; 196: 111320, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32956995

RESUMEN

In food safety and food quality, biofilm research is of great importance for mitigating food-borne pathogens in food processing environments. To supplement the traditional staining techniques for biofilm characterization, we introduce several non-traditional imaging methods for detecting biofilm attachment to the solid-liquid and air-liquid interfaces. For strains of Pseudomonas aeruginosa (the positive control), Acinetobacter baumanii, Listeria monocytogenes and Salmonella enterica, the traditional crystal violet assay showed evidence of biofilm attachment to the well plate base as well as inferred the presence of an air-liquid biofilm attached on the upper well walls where the meniscus was present. However, air-liquid biofilms and solid-surface-attached biofilms were not detected for all of these strains using the non-traditional imaging methods. For L. monocytogenes, we were unable to detect biofilms at a particle-laden, air-liquid interface as evidenced through microscopy, which contradicts the meniscus staining test and suggests that the coffee-ring effect may lead to false positives when using meniscus staining. Furthermore, when L. monocytogenes was cultivated in a pendant droplet in air, only microbial sediment at the droplet apex was observed without any apparent bacterial colonization of the droplet surface. All other strains showed clear evidence of air-liquid biofilms at the air-liquid interface of a pendant droplet. To non-invasively detect if and when air-liquid pellicles form in a well plate, we also present a novel in situ reflection assay that demonstrates the capacity to do this quantitatively.


Asunto(s)
Biopelículas , Listeria monocytogenes
7.
Langmuir ; 36(44): 13155-13165, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787013

RESUMEN

Oils spilled into surface water require effective and timely treatment. In this paper, we report on a low-molecular-weight gelator that can form gels in organic and aqueous phases. The aqueous gel was observed to absorb oils, which is proposed as a new class of materials for remediating oil spilled into surface water. The gels and the low-molecular-weight gelator have both fundamental and applied significance. Fundamentally, identifying the mechanisms that govern the formation of these gels and their resultant mechanical properties is of interest. Subsequently, these fundamental insights aid in the optimization of these gels for addressing spilled oil. First, we briefly compare the organic and aqueous gels qualitatively before focusing on the aqueous gel. Second, we demonstrate the ability of the aqueous gel to wick oils through experiments in a Hele-Shaw cell and compare our results to the Washburn equation for porous media. The Washburn equation is not entirely adequate in describing our results due to the change in volume of the porous media during the wicking process. Finally, we investigate mechanisms proposed to govern the formation of low-molecular-weight gels in the literature through rheological shear measurements during gel formation. Our experiments suggest that the proposed mechanisms are applicable to our aqueous gels, growing as anisotropic crystal networks with fractal dimensions between one and two dimensions from temporally sporadic nucleation sites.

8.
Langmuir ; 36(6): 1484-1495, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-31944124

RESUMEN

A novel sorbent material consisting of a gel made from canola oil and water, emulsified with lecithin, was used to remove two model solvents from water. Sorption capacity was quantified through small-scale batch experiments. The structure and the mechanical properties of the gel were compared with and without added solvent to assess their cohesiveness upon removing contaminants from water. Confocal microscopy showed that the initial gel consisted of water droplets clustered in a canola oil continuous phase. The G' of the gels increased with solvent absorption to a maximum at 33% (v/v) hexane or 24% (v/v) toluene. Larger absorbed volumes led to decreases in G' of the gel. G' for solvent mixtures of 50% toluene and 50% hexane was intermediate between G' measured for the same volumes of pure solvents. Confocal microscopy suggests that the decrease of G' upon addition of large solvent volumes was due to a simple dilution effect. It is hypothesized that the initial increase in storage modulus was caused by changes in the structure of the lecithin films formed at the oil-water interfaces. This hypothesis was evaluated through measurements of interfacial tension, visualization of the interface with optical microscopy, force measurements of a single droplet under compression using a cantilevered-capillary force apparatus, compressional isotherm measurements conducted using a Langmuir trough. The cantilevered-capillary force apparatus and Langmuir trough experiments demonstrated that lecithin films at the canola oil-water interface were rigidified by toluene and hexane addition.

9.
Soft Matter ; 12(46): 9266-9279, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27752701

RESUMEN

Understanding and enabling the control of the properties of foams is important for a variety of commercial processes and consumer products. In these systems, the role of surface active compounds has been the subject of many investigations using a wide range of techniques. The study of their influence on simplified geometries such as two bubbles in a liquid or a thin film of solution (such as in the well-known Scheludko cell), has yielded important fundamental understanding. Similarly, in this work an interferometric technique is used to study the dynamic evolution of the film formed by a single bubble being pressed against a planar air-liquid interface. Here interferometry is used to dynamically measure the total volume of liquid contained within the thin-film region between the bubble and the planar interface. Three different small-molecule, surfactant solutions were investigated and the data obtained via interferometry were compared to measurements of the density of bulk foams of the same solutions. The density measurements were collected with a simple, but novel technique using a conical-shaped bubbling apparatus. The results reveal a strong correlation between the measurements on single bubbles and complete foams. This suggests that further investigations using interferometric techniques can be instrumental to building a more detailed mechanistic understanding of how different surface-active compounds influence foam properties. The results also reveal that the commonly used assumption that surfactant-laden interfaces may be modeled as immobile, is too simplistic to accurately model interfaces with small-molecule surfactants.

10.
Invest Ophthalmol Vis Sci ; 57(3): 949-58, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26943158

RESUMEN

PURPOSE: An experimental platform to replicate the human tear film on a contact lens is presented. The influence of interfacial viscoelasticity in stabilizing in vitro model tear films against breakup and dewetting is investigated using this instrument. METHODS: Model tear films consisting of bovine meibomian lipids (meibum) spread on either PBS or artificial tear solution (ATS) are created. The interfacial shear rheology of these films is measured as a function of temperature. The dewetting dynamics of these films is then investigated using the Interfacial Dewetting and Drainage Optical Platform (i-DDrOP) on top of silicone hydrogel (SiHy) contact lenses at 23 and 35°C. The film breakup times are evaluated using two parameters: onset of film breakup, Tonset for thick films (∼100 µm), and tear breakup times, TBU for thin films (∼1 µm). Thin film thinning rates as a result of evaporation are also calculated. RESULTS: The ATS/meibum films have the largest surface rheology and correspondingly show the largest Tonset times at both 23 and 35°C. The parameter TBU is also significantly larger for ATS/meibum (TBU ∼ 40 seconds) compared with that of ATS and PBS/meibum films (TBU ∼ 30 seconds) at room temperature. However, at 35°C, all three model tear films exhibit similar TBU ∼ 17 seconds and average rate of thinning of -4 µm/minute. CONCLUSIONS: Tear film stability is influenced by both surface rheology and evaporation. The in vitro tear breakup times and thinning rates of model tear films at 35°C are in good agreement with in vivo measurements previously reported, highlighting the utility of the i-DDrOP for in vitro tear film breakup research.


Asunto(s)
Glándulas Tarsales/química , Lágrimas/química , Animales , Bovinos , Humanos , Lípidos/análisis , Propiedades de Superficie , Viscosidad , Humectabilidad
11.
Soft Matter ; 10(39): 7769-80, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25141827

RESUMEN

Depletion-attraction induced adhesion of two giant (∼ 40 µm), charged multilamellar vesicles is studied using a new Cantilevered-Capillary Force Apparatus, developed in this laboratory. The specific goal of this work is to investigate the role of dynamics in the adhesion and de-adhesion processes when the vesicles come together or are pulled apart at a constant velocity. Hydrodynamic effects are found to play an important role in the adhesion and separation of vesicles at the velocities that are studied. Specifically, a period of hydrodynamically controlled drainage of the thin film between vesicles is observed prior to adhesion, and it is shown that the force required to separate a pair of tensed, adhering vesicles increases with increasing separation velocity and membrane tension. It is also shown that the work done to separate the vesicles increases with separation velocity, but exhibits a maximum as the membrane tension is varied.

12.
Langmuir ; 29(15): 4715-25, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23540603

RESUMEN

A new instrument is presented for investigating interactions between individual colloidal particles, emulsion droplets, foam bubbles, and other particle-particle or particle-surface interactions. Measurement capabilities are demonstrated by measuring interfacial tension, coalescence time for emulsion droplets, adhesion between giant multilamellar vesicles, and adhesion between model food emulsion particles. The magnitude of the interaction force that can be measured or imposed, ranges from 1 nN to 1 mN for particles ranging in size from 10 µm to 1 mm in diameter.


Asunto(s)
Electroforesis Capilar/instrumentación , Coloides/química , Rayos Láser , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...